⬆️MClimate 16ASPM Uplink decoder
Decoder (JavaScript ES5):
function decodeUplink(input) {
try {
var bytes = input.bytes;
var data = {};
function handleKeepalive(bytes, data) {
data.internalTemperature = bytes[1];
// Energy data
var energy = (bytes[2] << 24) | (bytes[3] << 16) | (bytes[4] << 8) | bytes[5];
data.energy_kWh = energy / 1000;
// Power data
var power = (bytes[6] << 8) | bytes[7];
data.power_W = power;
// AC voltage
data.acVoltage_V = bytes[8];
// AC current data
var acCurrent = (bytes[9] << 8) | bytes[10];
data.acCurrent_mA = acCurrent;
// Relay state
data.relayState = bytes[11] === 0x01 ? "ON" : "OFF";
return data;
}
function handleResponse(bytes, data){
var commands = bytes.map(function(byte){
return ("0" + byte.toString(16)).substr(-2);
});
commands = commands.slice(0,-12);
var command_len = 0;
commands.map(function (command, i) {
switch (command) {
case '04':
{
command_len = 2;
var hardwareVersion = commands[i + 1];
var softwareVersion = commands[i + 2];
data.deviceVersions = { hardware: Number(hardwareVersion), software: Number(softwareVersion) };
}
break;
case '12':
{
command_len = 1;
data.keepAliveTime = parseInt(commands[i + 1], 16);
}
break;
case '19':
{
command_len = 1;
var commandResponse = parseInt(commands[i + 1], 16);
var periodInMinutes = commandResponse * 5 / 60;
data.joinRetryPeriod = periodInMinutes;
}
break;
case '1b':
{
command_len = 1;
data.uplinkType = parseInt(commands[i + 1], 16) ;
}
break;
case '1d':
{
command_len = 2;
var wdpC = commands[i + 1] == '00' ? false : parseInt(commands[i + 1], 16);
var wdpUc = commands[i + 2] == '00' ? false : parseInt(commands[i + 2], 16);
data.watchDogParams= { wdpC: wdpC, wdpUc: wdpUc } ;
}
break;
case '1f':
{
command_len = 2;
data.overheatingThresholds = {trigger: parseInt(commands[i + 1], 16), recovery: parseInt(commands[i + 2], 16) }
}
break;
case '21':
{
command_len = 3;
data.overvoltageThreshold = {trigger: (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16), recovery: parseInt(commands[i + 3], 16)};
}
break;
case '23':
{
command_len = 1;
data.overcurrentThreshold = parseInt(commands[i + 1], 16) ;
}
break;
case '25':
{
command_len = 2;
data.overpowerThreshold = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16) ;
}
break;
case '5a':
{
command_len = 1;
data.afterOverheatingProtectionRecovery = parseInt(commands[i + 1], 16)
}
break;
case '5c':
{
command_len = 1;
data.ledIndicationMode = parseInt(commands[i + 1], 16)
}
break;
case '5d':
{
command_len = 1;
data.manualChangeRelayState = parseInt(commands[i + 1], 16) === 0x01
}
break;
case '5f':
{
command_len = 1;
data.relayRecoveryState = parseInt(commands[i + 1], 16) ;
}
break;
case '60':
{
command_len = 2;
data.overheatingEvents = { events: parseInt(commands[i + 1], 16), temperature: parseInt(commands[i + 2], 16) } ;
}
break;
case '61':
{
command_len = 3;
data.overvoltageEvents = { events: parseInt(commands[i + 1], 16), voltage: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16) };
}
break;
case '62':
{
command_len = 3;
data.overcurrentEvents = { events: parseInt(commands[i + 1], 16), current: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16) }
}
break;
case '63':
{
command_len = 3;
data.overpowerEvents = { events: parseInt(commands[i + 1], 16), power: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16) };
}
break;
case '70':
{
command_len = 2;
data.overheatingRecoveryTime = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16) ;
}
break;
case '71':
{
command_len = 2;
data.overvoltageRecoveryTime = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
}
break;
case '72':
{
command_len = 1;
data.overcurrentRecoveryTemp = parseInt(commands[i + 1], 16);
}
break;
case '73':
{
command_len = 1;
data.overpowerRecoveryTemp = parseInt(commands[i + 1], 16);
}
break;
case 'b1':
{
command_len = 1;
data.relayState = parseInt(commands[i + 1], 16) === 0x01
}
break;
case 'a0':
{
command_len = 4;
let fuota_address = parseInt(`${commands[i + 1]}${commands[i + 2]}${commands[i + 3]}${commands[i + 4]}`, 16)
let fuota_address_raw = `${commands[i + 1]}${commands[i + 2]}${commands[i + 3]}${commands[i + 4]}`
data.fuota = { fuota_address, fuota_address_raw };
}
break;
default:
break;
}
commands.splice(i,command_len);
});
return data;
}
if (bytes[0] == 1) {
data = handleKeepalive(bytes, data);
} else {
data = handleResponse(bytes, data);
// Handle the remaining keepalive data if required after response
bytes = bytes.slice(-12);
data = handleKeepalive(bytes, data);
}
return { data: data };
} catch (e) {
// console.log(e);
throw new Error('Unhandled data');
}
}
Decoder (JavaScript ES6+):
const decodeUplink = (input) => {
try {
let { bytes } = input;
let data = {};
const handleKeepalive = (bytes, data) => {
data.internalTemperature = bytes[1];
// Energy data
const energy = (bytes[2] << 24) | (bytes[3] << 16) | (bytes[4] << 8) | bytes[5];
data.energy_kWh = energy / 1000;
// Power data
const power = (bytes[6] << 8) | bytes[7];
data.power_W = power;
// AC voltage
data.acVoltage_V = bytes[8];
// AC current data
const acCurrent = (bytes[9] << 8) | bytes[10];
data.acCurrent_mA = acCurrent;
// Relay state
data.relayState = bytes[11] === 0x01 ? "ON" : "OFF";
return data;
};
const handleResponse = (bytes, data) => {
let commands = bytes.map(byte => (`0${byte.toString(16)}`).slice(-2)).slice(0, -12);
let command_len = 0;
commands.forEach((command, i) => {
switch (command) {
case '04': {
command_len = 2;
const hardwareVersion = commands[i + 1];
const softwareVersion = commands[i + 2];
data.deviceVersions = {
hardware: Number(hardwareVersion),
software: Number(softwareVersion),
};
break;
}
case '12': {
command_len = 1;
data.keepAliveTime = parseInt(commands[i + 1], 16);
break;
}
case '19': {
command_len = 1;
const commandResponse = parseInt(commands[i + 1], 16);
const periodInMinutes = (commandResponse * 5) / 60;
data.joinRetryPeriod = periodInMinutes;
break;
}
case '1b': {
command_len = 1;
data.uplinkType = parseInt(commands[i + 1], 16);
break;
}
case '1d': {
command_len = 2;
const wdpC = commands[i + 1] === '00' ? false : parseInt(commands[i + 1], 16);
const wdpUc = commands[i + 2] === '00' ? false : parseInt(commands[i + 2], 16);
data.watchDogParams = { wdpC, wdpUc };
break;
}
case '1f': {
command_len = 2;
data.overheatingThresholds = {
trigger: parseInt(commands[i + 1], 16),
recovery: parseInt(commands[i + 2], 16),
};
break;
}
case '21': {
command_len = 3;
data.overvoltageThreshold = {
trigger: (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16),
recovery: parseInt(commands[i + 3], 16),
};
break;
}
case '23': {
command_len = 1;
data.overcurrentThreshold = parseInt(commands[i + 1], 16);
break;
}
case '25': {
command_len = 2;
data.overpowerThreshold = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
break;
}
case '5a': {
command_len = 1;
data.afterOverheatingProtectionRecovery = parseInt(commands[i + 1], 16);
break;
}
case '5c': {
command_len = 1;
data.ledIndicationMode = parseInt(commands[i + 1], 16);
break;
}
case '5d': {
command_len = 1;
data.manualChangeRelayState = parseInt(commands[i + 1], 16) === 0x01;
break;
}
case '5f': {
command_len = 1;
data.relayRecoveryState = parseInt(commands[i + 1], 16);
break;
}
case '60': {
command_len = 2;
data.overheatingEvents = {
events: parseInt(commands[i + 1], 16),
temperature: parseInt(commands[i + 2], 16),
};
break;
}
case '61': {
command_len = 3;
data.overvoltageEvents = {
events: parseInt(commands[i + 1], 16),
voltage: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16),
};
break;
}
case '62': {
command_len = 3;
data.overcurrentEvents = {
events: parseInt(commands[i + 1], 16),
current: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16),
};
break;
}
case '63': {
command_len = 3;
data.overpowerEvents = {
events: parseInt(commands[i + 1], 16),
power: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16),
};
break;
}
case '70': {
command_len = 2;
data.overheatingRecoveryTime = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
break;
}
case '71': {
command_len = 2;
data.overvoltageRecoveryTime = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
break;
}
case '72': {
command_len = 1;
data.overcurrentRecoveryTemp = parseInt(commands[i + 1], 16);
break;
}
case '73': {
command_len = 1;
data.overpowerRecoveryTemp = parseInt(commands[i + 1], 16);
break;
}
case 'b1': {
command_len = 1;
data.relayState = parseInt(commands[i + 1], 16) === 0x01;
break;
}
case 'a0': {
command_len = 4;
const fuota_address = parseInt(
`${commands[i + 1]}${commands[i + 2]}${commands[i + 3]}${commands[i + 4]}`,
16
);
const fuota_address_raw = `${commands[i + 1]}${commands[i + 2]}${commands[i + 3]}${commands[i + 4]}`;
data.fuota = { fuota_address, fuota_address_raw };
break;
}
default:
break;
}
commands.splice(i, command_len);
});
return data;
};
if (bytes[0] === 1) {
data = handleKeepalive(bytes, data);
} else {
data = handleResponse(bytes, data);
bytes = bytes.slice(-12);
data = handleKeepalive(bytes, data);
}
return { data };
} catch (e) {
console.log(e);
throw new Error('Unhandled data');
}
};
Last updated