MClimate LoRaWAN Devices
  • Overview
  • FAQ
  • Firmware Upgrade Over The Air (FUOTA)
  • Devices
    • 🆕МClimate 16A Dry Switch (16ADS)
      • 🥳Release notes
      • 🛠️How to use
      • ⬆️MClimate 16ADS Uplink decoder
      • ⬇️MClimate 16ADS Downlink encoder
      • 📖MClimate 16ADS Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • Overheating protection
        • Relay state 16ADS
        • LED indication mode
        • Network-related settings
        • Get Firmware & Hardware version
        • Restart device
    • 🆕МClimate 16A Switch & Power Meter LoRaWAN (16ASPM)
      • 🥳Release notes
      • 🛠️How to use
      • ⬆️MClimate 16ASPM Uplink decoder
      • ⬇️MClimate 16ASPM Downlink encoder
      • 📖MClimate 16ASPM Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • Protections
        • Relay state 16ASPM
        • Clear accumulated energy
        • LED indication mode
        • Network-related settings
        • Get Firmware & Hardware version
        • Restart device
    • 😲MClimate Fan Coil Thermostat (FCT)
      • 🥳Release notes
      • ⭐Getting started
      • ⚡Wiring Diagrams (Applications) & Operational Modes
      • ⬆️MClimate Fan Coil Thermostat Uplink decoder
      • ⬇️MClimate Fan Coil Thermostat Downlink encoder
      • 📖MClimate Fan Coil Thermostat Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Keep-alive
        • ON/OFF & Target temperature
          • Valve(s) operation
          • Target temperature ranges
        • Fan Settings
          • Auto Fan - Δ settings
        • 🔓Keys lock
        • External temperature measurement
        • Power module communication status
        • Function of digital input/output (IO1 and IO2 ports)
          • Automatic changeover
          • Occupancy sensor
        • General, Display & Power recovery
          • Hiding data from the display & settings
          • Frost Protection
          • Temperature sensor errors
          • Network-related settings
            • Uplink types
          • User interface language
        • Restart device
    • ♨️MClimate Vicki LoRaWAN
      • 🥳Release notes
      • ⬆️Vicki Uplink Decoder
      • ⬇️Vicki Downlink Encoder
      • 📖Vicki LoRaWAN Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • Manual target temperature change
        • Operational modes & temperature control algorithms
          • Algorithm 1 - Equal directional control
          • Algorithm 2 - Proportional control
          • Algorithm 3 - Proportional Integral
        • External temperature measurement and internal temperature offset
        • Control target temperature and/or motor position and range
        • Recalibrate motor command explanation
        • Read device hardware and software version command explanation.
        • Anti-freeze functionality
        • Open window detection
        • Child lock
        • Target temperature ranges
        • Temperature units
        • Force-close & Force-attach
        • Network-related settings
        • Appendix (examples)
      • 📺Technical Deepdive Webinar
    • 🆕MClimate CO2 Display lite
      • 🥳Release notes
      • ⬆️MClimate CO2 Display lite Uplink decoder
      • 📖CO2 Display lite Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • CO2 measurement settings
        • Hiding data from the display
        • Child lock
        • Network-related settings & Others
        • Get Firmware & Hardware version
        • Restart device
    • MClimate CO2 Display
      • 🥳Release notes
      • ⬆️MClimate CO2 Display Uplink decoder
      • 📖CO2 Display Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • CO2 measurement settings
        • Hiding data from the display
        • Child lock
        • PIR (Motion sensor)
        • Network-related settings & Others
        • Get Firmware & Hardware version
    • MClimate Wireless Thermostat
      • 🥳Release notes
      • ⬆️MClimate Wireless Thermostat Uplink decoder
      • ⬇️MClimate Wireless Thermostat Uplink encoder
      • 📖Wireless Thermostat Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • Target Temperature & Temperature range
        • Sensor mode & hiding data from the display
        • Heating status flag
        • Child lock
        • PIR (Motion sensor)
        • Get Firmware & Hardware version
        • Network-related settings & Others
    • MClimate HT Sensor LoRaWAN
      • 🥳Release notes
      • ⬆️HT Sensor Uplink Decoder
      • 📖HT Sensor LoRaWAN Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Temperature and humidity compensation
        • Keep-alive
        • Read device hardware and software version command explanation.
        • Network-related settings
        • Uplink types
        • Appendix (examples)
    • MClimate CO2 Sensor and Notifier LoRaWAN
      • 🥳Release notes
      • ⬆️CO2 Sensor Uplink Decoder
      • 📖CO2 Sensor LoRaWAN Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Keep-alive
        • Read device hardware and software version command explanation.
        • Network-related settings
        • Uplink types
        • CO2 boundary levels
        • CO2 auto-zero value
        • CO2 auto-zero period
        • CO2 Measurement period
        • Notifications configuration
    • MClimate Open/Close Sensor LoRaWAN
      • 🥳Release notes
      • ⬆️Open/Close Sensor uplink decoder
      • 📖Open/Close sensor LoRaWAN communication protocol
        • Commands cheat sheet
        • Keep-alive
        • Read device hardware and software version command explanation
        • Uplink types
        • Network-related settings
        • Event notification
        • Notification Blind Time
        • LED control command explanation
        • Restart device
    • MClimate Multipurpose Button LoRaWAN
      • 🥳Release notes
      • ⬆️Multipurpose Button Uplink decoder
      • 📖MClimate Button LoRaWAN Device communication protocol
        • Commands cheat sheet
        • Keep-alive
        • LEDs, button press types and behaviour
        • Read device hardware and software version command explanation
        • Network-related settings
        • Uplink types
        • Button press event counters
        • LED control command explanation
        • Restart device
    • MClimate T-Valve LoRaWAN
      • 🥳Release notes
      • ⬆️T-Valve Uplink Decoder
      • T-Valve LoRaWAN communication protocol
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • Valve state control
        • Set LED behavior
        • Buzzer control
        • Emergency openings
        • Enable/disable manual valve open/close
        • Flood alarm time
        • Keep-alive period
        • Request Long data packet
        • Device allowed working voltage
        • Enable/Disable device flood sensor
        • Network related settings
        • Deactivate device (non-operational mode, save power)
    • MClimate Flood Sensor LoRaWAN
      • 🥳Release notes
      • ⬆️Flood Sensor Uplink Decoder
      • 📖Flood Sensor LoRaWAN communication protocol
        • Commands cheat sheet
        • Keep-alive
        • Flood event - Available configurations
        • Uplink types
        • Network-related settings
        • Read Firmware & Hardware version
        • Custom control of LED and Acoustic Buzzer
        • Read device parameters command
        • Restart device
    • MClimate AQI Sensor and Notifier LoRaWAN
      • 🥳Release notes
      • AQI Sensor Uplink Decoder
      • AQI Sensor Downlink encoder
      • AQI Sensor LoRaWAN Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Keep-alive
        • Read device hardware and software version command explanation.
        • Network-related settings
        • Uplink types
        • Device buzzer control command
        • Device LED’s control
        • Appendix (examples)
  • Others
    • Application of MClimate Vicki to One-pipe steam heating systems
    • Battery Lifetime Estimation Methodology
    • Discover Smart Buildings solutions
    • How to solve Large space heating issues
    • Device Firmware upgrade via a Field Programming Kit (FPK)
      • Vicki Firmware Upgrade
  • Integrations
    • The Things Industries / TTN V3
    • ThingPark Enterprise
    • ThingPark Community
    • Tektelic
    • Helium
    • Chirpstack
    • Loriot
    • Kerlink
    • Melita
    • MachineQ
    • Orbiwise
    • Firefly
    • B-One
    • Milesight
    • Akenza
    • Element-IoT
    • Senet
    • Wattsense
    • RAK WisGateOS2
    • Netmore
Powered by GitBook
On this page
  • Decoder (JavaScript ES5):
  • Decoder (JavaScript ES6+):
  • Milesight Decoder:

Was this helpful?

  1. Devices
  2. МClimate 16A Switch & Power Meter LoRaWAN (16ASPM)

MClimate 16ASPM Uplink decoder

Decoder (JavaScript ES5):

function decodeUplink(input) {
    try {
        var bytes = input.bytes;
        var data = {};

        function handleKeepalive(bytes, data) {
            data.internalTemperature = bytes[1];

        // Energy data
        var energy = (bytes[2] << 24) | (bytes[3] << 16) | (bytes[4] << 8) | bytes[5];
        data.energy_kWh = energy / 1000;

        // Power data
        var power = (bytes[6] << 8) | bytes[7];
        data.power_W = power;

        // AC voltage
        data.acVoltage_V = bytes[8];

        // AC current data
        var acCurrent = (bytes[9] << 8) | bytes[10];
        data.acCurrent_mA = acCurrent;
        
        // Relay state
        data.relayState = bytes[11] === 0x01 ? "ON" : "OFF";
            return data;
        }

        function handleResponse(bytes, data){
            var commands = bytes.map(function(byte){
                return ("0" + byte.toString(16)).substr(-2); 
            });
            commands = commands.slice(0,-12);
            var command_len = 0;
        
            commands.map(function (command, i) {
                switch (command) {
                    case '04':
                        {
                            command_len = 2;
                            var hardwareVersion = commands[i + 1];
                            var softwareVersion = commands[i + 2];
                            data.deviceVersions = { hardware: Number(hardwareVersion), software: Number(softwareVersion) };
                        }
                    break;
                    case '12':
                        {
                            command_len = 1;
                            data.keepAliveTime = parseInt(commands[i + 1], 16);
                        }
                    break;
                    case '19':
                        {
                            command_len = 1;
                            var commandResponse = parseInt(commands[i + 1], 16);
                            var periodInMinutes = commandResponse * 5 / 60;
                            data.joinRetryPeriod =  periodInMinutes;
                        }
                    break;
                    case '1b':
                        {
                            command_len = 1;
                            data.uplinkType = parseInt(commands[i + 1], 16) ;
                        }
                    break;
                    case '1d':
                        {
                            command_len = 2;
                            var wdpC = commands[i + 1] == '00' ? false : parseInt(commands[i + 1], 16);
                            var wdpUc = commands[i + 2] == '00' ? false : parseInt(commands[i + 2], 16);
                            data.watchDogParams= { wdpC: wdpC, wdpUc: wdpUc } ;
                        }
                    break;
                    case '1f':
                        {
                            command_len = 2;
                            data.overheatingThresholds = {trigger: parseInt(commands[i + 1], 16), recovery: parseInt(commands[i + 2], 16) }
                        }
                    break;
                    case '21':
                        {
                            command_len = 3;
                            data.overvoltageThreshold = {trigger: (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16), recovery: parseInt(commands[i + 3], 16)};
                        }
                    break;
                    case '23':
                        {
                            command_len = 1;
                            data.overcurrentThreshold = parseInt(commands[i + 1], 16) ;
                        }
                    break;
                    case '25':
                        {
                            command_len = 2;
                            data.overpowerThreshold = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16) ;
                        }
                    break;
                    case '5a':
                        {
                            command_len = 1;
                            data.afterOverheatingProtectionRecovery = parseInt(commands[i + 1], 16)
                        }
                    break;
                    case '5c':
                        {
                            command_len = 1;
                            data.ledIndicationMode = parseInt(commands[i + 1], 16)
                        }
                    break;
                    case '5d':
                        {
                            command_len = 1;
                            data.manualChangeRelayState = parseInt(commands[i + 1], 16) === 0x01
                        }
                    break;
                    case '5f':
                        {
                            command_len = 1;
                            data.relayRecoveryState = parseInt(commands[i + 1], 16) ;
                        }
                    break;
                    case '60':
                        {
                            command_len = 2;
                            data.overheatingEvents = { events: parseInt(commands[i + 1], 16), temperature: parseInt(commands[i + 2], 16) } ;
                        }
                    break;
                    case '61':
                        {
                            command_len = 3;
                            data.overvoltageEvents = { events: parseInt(commands[i + 1], 16), voltage: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16) };
                        }
                    break;
                    case '62':
                        {
                            command_len = 3;
                            data.overcurrentEvents = { events: parseInt(commands[i + 1], 16), current: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16) }
                        }
                    break;
                    case '63':
                        {
                            command_len = 3;
                            data.overpowerEvents = { events: parseInt(commands[i + 1], 16), power: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16) };
                        }
                    break;
                    case '70':
                        {
                            command_len = 2;
                            data.overheatingRecoveryTime = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16) ;
                        }
                    break;
                    case '71':
                        {
                            command_len = 2;
                            data.overvoltageRecoveryTime = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
                        }
                    break;
                    case '72':
                        {
                            command_len = 1;
                            data.overcurrentRecoveryTemp = parseInt(commands[i + 1], 16);
                        }
                    break;
                    case '73':
                        {
                            command_len = 1;
                            data.overpowerRecoveryTemp = parseInt(commands[i + 1], 16);
                        }
                    break;
                    case 'b1':
                        {
                            command_len = 1;
                            data.relayState = parseInt(commands[i + 1], 16) === 0x01
                        }
                    break;
                    case 'a0':
                        {
                            command_len = 4;
                            let fuota_address = parseInt(`${commands[i + 1]}${commands[i + 2]}${commands[i + 3]}${commands[i + 4]}`, 16)
                            let fuota_address_raw = `${commands[i + 1]}${commands[i + 2]}${commands[i + 3]}${commands[i + 4]}`
                            data.fuota = { fuota_address, fuota_address_raw };
                        }
                    break;
                    default:
                        break;
                }
                commands.splice(i,command_len);
            });
            return data;
            }

        if (bytes[0] == 1) {
            data = handleKeepalive(bytes, data);
        } else {
            data = handleResponse(bytes, data);
            // Handle the remaining keepalive data if required after response
            bytes = bytes.slice(-12);
            data = handleKeepalive(bytes, data);
        }
        return { data: data };
    } catch (e) {
        // console.log(e);
        throw new Error('Unhandled data');
    }
}

Decoder (JavaScript ES6+):

const decodeUplink = (input) => {
    try {
        let { bytes } = input;
        let data = {};

        const handleKeepalive = (bytes, data) => {
            data.internalTemperature = bytes[1];

            // Energy data
            const energy = (bytes[2] << 24) | (bytes[3] << 16) | (bytes[4] << 8) | bytes[5];
            data.energy_kWh = energy / 1000;

            // Power data
            const power = (bytes[6] << 8) | bytes[7];
            data.power_W = power;

            // AC voltage
            data.acVoltage_V = bytes[8];

            // AC current data
            const acCurrent = (bytes[9] << 8) | bytes[10];
            data.acCurrent_mA = acCurrent;

            // Relay state
            data.relayState = bytes[11] === 0x01 ? "ON" : "OFF";

            return data;
        };

        const handleResponse = (bytes, data) => {
            let commands = bytes.map(byte => (`0${byte.toString(16)}`).slice(-2)).slice(0, -12);
            let command_len = 0;

            commands.forEach((command, i) => {
                switch (command) {
                    case '04': {
                        command_len = 2;
                        const hardwareVersion = commands[i + 1];
                        const softwareVersion = commands[i + 2];
                        data.deviceVersions = {
                            hardware: Number(hardwareVersion),
                            software: Number(softwareVersion),
                        };
                        break;
                    }
                    case '12': {
                        command_len = 1;
                        data.keepAliveTime = parseInt(commands[i + 1], 16);
                        break;
                    }
                    case '19': {
                        command_len = 1;
                        const commandResponse = parseInt(commands[i + 1], 16);
                        const periodInMinutes = (commandResponse * 5) / 60;
                        data.joinRetryPeriod = periodInMinutes;
                        break;
                    }
                    case '1b': {
                        command_len = 1;
                        data.uplinkType = parseInt(commands[i + 1], 16);
                        break;
                    }
                    case '1d': {
                        command_len = 2;
                        const wdpC = commands[i + 1] === '00' ? false : parseInt(commands[i + 1], 16);
                        const wdpUc = commands[i + 2] === '00' ? false : parseInt(commands[i + 2], 16);
                        data.watchDogParams = { wdpC, wdpUc };
                        break;
                    }
                    case '1f': {
                        command_len = 2;
                        data.overheatingThresholds = {
                            trigger: parseInt(commands[i + 1], 16),
                            recovery: parseInt(commands[i + 2], 16),
                        };
                        break;
                    }
                    case '21': {
                        command_len = 3;
                        data.overvoltageThreshold = {
                            trigger: (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16),
                            recovery: parseInt(commands[i + 3], 16),
                        };
                        break;
                    }
                    case '23': {
                        command_len = 1;
                        data.overcurrentThreshold = parseInt(commands[i + 1], 16);
                        break;
                    }
                    case '25': {
                        command_len = 2;
                        data.overpowerThreshold = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
                        break;
                    }
                    case '5a': {
                        command_len = 1;
                        data.afterOverheatingProtectionRecovery = parseInt(commands[i + 1], 16);
                        break;
                    }
                    case '5c': {
                        command_len = 1;
                        data.ledIndicationMode = parseInt(commands[i + 1], 16);
                        break;
                    }
                    case '5d': {
                        command_len = 1;
                        data.manualChangeRelayState = parseInt(commands[i + 1], 16) === 0x01;
                        break;
                    }
                    case '5f': {
                        command_len = 1;
                        data.relayRecoveryState = parseInt(commands[i + 1], 16);
                        break;
                    }
                    case '60': {
                        command_len = 2;
                        data.overheatingEvents = {
                            events: parseInt(commands[i + 1], 16),
                            temperature: parseInt(commands[i + 2], 16),
                        };
                        break;
                    }
                    case '61': {
                        command_len = 3;
                        data.overvoltageEvents = {
                            events: parseInt(commands[i + 1], 16),
                            voltage: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16),
                        };
                        break;
                    }
                    case '62': {
                        command_len = 3;
                        data.overcurrentEvents = {
                            events: parseInt(commands[i + 1], 16),
                            current: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16),
                        };
                        break;
                    }
                    case '63': {
                        command_len = 3;
                        data.overpowerEvents = {
                            events: parseInt(commands[i + 1], 16),
                            power: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16),
                        };
                        break;
                    }
                    case '70': {
                        command_len = 2;
                        data.overheatingRecoveryTime = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
                        break;
                    }
                    case '71': {
                        command_len = 2;
                        data.overvoltageRecoveryTime = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
                        break;
                    }
                    case '72': {
                        command_len = 1;
                        data.overcurrentRecoveryTemp = parseInt(commands[i + 1], 16);
                        break;
                    }
                    case '73': {
                        command_len = 1;
                        data.overpowerRecoveryTemp = parseInt(commands[i + 1], 16);
                        break;
                    }
                    case 'b1': {
                        command_len = 1;
                        data.relayState = parseInt(commands[i + 1], 16) === 0x01;
                        break;
                    }
                    case 'a0': {
                        command_len = 4;
                        const fuota_address = parseInt(
                            `${commands[i + 1]}${commands[i + 2]}${commands[i + 3]}${commands[i + 4]}`,
                            16
                        );
                        const fuota_address_raw = `${commands[i + 1]}${commands[i + 2]}${commands[i + 3]}${commands[i + 4]}`;
                        data.fuota = { fuota_address, fuota_address_raw };
                        break;
                    }
                    default:
        d                break;
         d       }
                commands.splice(i, command_len);
            });

            return data;
        };

        if (bytes[0] === 1) {
            data = handleKeepalive(bytes, data);
        } else {
            data = handleResponse(bytes, data);
            bytes = bytes.slice(-12);
            data = handleKeepalive(bytes, data);
        }

        return { data };
    } catch (e) {
        console.log(e);
        throw new Error('Unhandled data');
    }
};

Milesight Decoder:


function Decode(port, bytes) {
    try {
        var data = {};

        function handleKeepalive(bytes, data) {
            data.internalTemperature = bytes[1];

            // Energy data
            var energy = (bytes[2] << 24) | (bytes[3] << 16) | (bytes[4] << 8) | bytes[5];
            data.energy_kWh = energy / 1000;

            // Power data
            var power = (bytes[6] << 8) | bytes[7];
            data.power_W = power;

            // AC voltage
            data.acVoltage_V = bytes[8];

            // AC current data
            var acCurrent = (bytes[9] << 8) | bytes[10];
            data.acCurrent_mA = acCurrent;

            // Relay state
            data.relayState = bytes[11] === 0x01 ? "ON" : "OFF";

            return data;
        }

        function handleResponse(bytes, data) {
            var commands = bytes.map(function (byte) {
                return ("0" + byte.toString(16)).substr(-2);
            });
            commands = commands.slice(0, -12);
            var command_len = 0;

            commands.forEach(function (command, i) {
                switch (command) {
                    case '04':
                        command_len = 2;
                        var hardwareVersion = commands[i + 1];
                        var softwareVersion = commands[i + 2];
                        data.deviceVersions = { hardware: Number(hardwareVersion), software: Number(softwareVersion) };
                        break;
                    case '12':
                        command_len = 1;
                        data.keepAliveTime = parseInt(commands[i + 1], 16);
                        break;
                    case '19':
                        command_len = 1;
                        var commandResponse = parseInt(commands[i + 1], 16);
                        var periodInMinutes = commandResponse * 5 / 60;
                        data.joinRetryPeriod = periodInMinutes;
                        break;
                    case '1b':
                        command_len = 1;
                        data.uplinkType = parseInt(commands[i + 1], 16);
                        break;
                    case '1d':
                        command_len = 2;
                        var wdpC = commands[i + 1] == '00' ? false : parseInt(commands[i + 1], 16);
                        var wdpUc = commands[i + 2] == '00' ? false : parseInt(commands[i + 2], 16);
                        data.watchDogParams = { wdpC: wdpC, wdpUc: wdpUc };
                        break;
                    case '1f':
                        command_len = 2;
                        data.overheatingThresholds = { trigger: parseInt(commands[i + 1], 16), recovery: parseInt(commands[i + 2], 16) };
                        break;
                    case '21':
                        command_len = 3;
                        data.overvoltageThreshold = {
                            trigger: (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16),
                            recovery: parseInt(commands[i + 3], 16)
                        };
                        break;
                    case '23':
                        command_len = 1;
                        data.overcurrentThreshold = parseInt(commands[i + 1], 16);
                        break;
                    case '25':
                        command_len = 2;
                        data.overpowerThreshold = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
                        break;
                    case '5a':
                        command_len = 1;
                        data.afterOverheatingProtectionRecovery = parseInt(commands[i + 1], 16);
                        break;
                    case '5c':
                        command_len = 1;
                        data.ledIndicationMode = parseInt(commands[i + 1], 16);
                        break;
                    case '5d':
                        command_len = 1;
                        data.manualChangeRelayState = parseInt(commands[i + 1], 16) === 0x01;
                        break;
                    case '5f':
                        command_len = 1;
                        data.relayRecoveryState = parseInt(commands[i + 1], 16);
                        break;
                    case '60':
                        command_len = 2;
                        data.overheatingEvents = {
                            events: parseInt(commands[i + 1], 16),
                            temperature: parseInt(commands[i + 2], 16)
                        };
                        break;
                    case '61':
                        command_len = 3;
                        data.overvoltageEvents = {
                            events: parseInt(commands[i + 1], 16),
                            voltage: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16)
                        };
                        break;
                    case '62':
                        command_len = 3;
                        data.overcurrentEvents = {
                            events: parseInt(commands[i + 1], 16),
                            current: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16)
                        };
                        break;
                    case '63':
                        command_len = 3;
                        data.overpowerEvents = {
                            events: parseInt(commands[i + 1], 16),
                            power: (parseInt(commands[i + 2], 16) << 8) | parseInt(commands[i + 3], 16)
                        };
                        break;
                    case '70':
                        command_len = 2;
                        data.overheatingRecoveryTime = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
                        break;
                    case '71':
                        command_len = 2;
                        data.overvoltageRecoveryTime = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
                        break;
                    case '72':
                        command_len = 1;
                        data.overcurrentRecoveryTemp = parseInt(commands[i + 1], 16);
                        break;
                    case '73':
                        command_len = 1;
                        data.overpowerRecoveryTemp = parseInt(commands[i + 1], 16);
                        break;
                    case 'b1':
                        command_len = 1;
                        data.relayState = parseInt(commands[i + 1], 16) === 0x01;
                        break;
                    case 'a0':
                        command_len = 4;
                        var fuota_address = parseInt(commands[i + 1] + commands[i + 2] + commands[i + 3] + commands[i + 4], 16);
                        var fuota_address_raw = commands[i + 1] + commands[i + 2] + commands[i + 3] + commands[i + 4];
                        data.fuota = { fuota_address: fuota_address, fuota_address_raw: fuota_address_raw };
                        break;
                    default:
                        break;
                }
                commands.splice(i, command_len);
            });

            return data;
        }

        if (bytes[0] === 1) {
            data = handleKeepalive(bytes, data);
        } else {
            data = handleResponse(bytes, data);
            // Handle the remaining keepalive data if required after response
            bytes = bytes.slice(-12);
            data = handleKeepalive(bytes, data);
        }

        return data ;
    } catch (e) {
        throw new Error('Unhandled data');
    }
}
PreviousHow to useNextMClimate 16ASPM Downlink encoder

Last updated 6 months ago

Was this helpful?

🆕
⬆️