MClimate LoRaWAN Devices
  • Overview
  • FAQ
  • Firmware Upgrade Over The Air (FUOTA)
  • Devices
    • 🆕МClimate 16A Dry Switch (16ADS)
      • 🥳Release notes
      • 🛠️How to use
      • ⬆️MClimate 16ADS Uplink decoder
      • ⬇️MClimate 16ADS Downlink encoder
      • 📖MClimate 16ADS Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • Overheating protection
        • Relay state 16ADS
        • LED indication mode
        • Network-related settings
        • Get Firmware & Hardware version
        • Restart device
    • 🆕МClimate 16A Switch & Power Meter LoRaWAN (16ASPM)
      • 🥳Release notes
      • 🛠️How to use
      • ⬆️MClimate 16ASPM Uplink decoder
      • ⬇️MClimate 16ASPM Downlink encoder
      • 📖MClimate 16ASPM Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • Protections
        • Relay state 16ASPM
        • Clear accumulated energy
        • LED indication mode
        • Network-related settings
        • Get Firmware & Hardware version
        • Restart device
    • 😲MClimate Fan Coil Thermostat (FCT)
      • 🥳Release notes
      • ⭐Getting started
      • ⚡Wiring Diagrams (Applications) & Operational Modes
      • ⬆️MClimate Fan Coil Thermostat Uplink decoder
      • ⬇️MClimate Fan Coil Thermostat Downlink encoder
      • 📖MClimate Fan Coil Thermostat Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Keep-alive
        • ON/OFF & Target temperature
          • Valve(s) operation
          • Target temperature ranges
        • Fan Settings
          • Auto Fan - Δ settings
        • 🔓Keys lock
        • External temperature measurement
        • Power module communication status
        • Function of digital input/output (IO1 and IO2 ports)
          • Automatic changeover
          • Occupancy sensor
        • General, Display & Power recovery
          • Hiding data from the display & settings
          • Frost Protection
          • Temperature sensor errors
          • Network-related settings
            • Uplink types
          • User interface language
        • Restart device
    • ♨️MClimate Vicki LoRaWAN
      • 🥳Release notes
      • ⬆️Vicki Uplink Decoder
      • ⬇️Vicki Downlink Encoder
      • 📖Vicki LoRaWAN Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • Manual target temperature change
        • Operational modes & temperature control algorithms
          • Algorithm 1 - Equal directional control
          • Algorithm 2 - Proportional control
          • Algorithm 3 - Proportional Integral
        • External temperature measurement and internal temperature offset
        • Control target temperature and/or motor position and range
        • Recalibrate motor command explanation
        • Read device hardware and software version command explanation.
        • Anti-freeze functionality
        • Open window detection
        • Child lock
        • Target temperature ranges
        • Temperature units
        • Force-close & Force-attach
        • Network-related settings
        • Appendix (examples)
      • 📺Technical Deepdive Webinar
    • 🆕MClimate CO2 Display lite
      • 🥳Release notes
      • ⬆️MClimate CO2 Display lite Uplink decoder
      • 📖CO2 Display lite Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • CO2 measurement settings
        • Hiding data from the display
        • Child lock
        • Network-related settings & Others
        • Get Firmware & Hardware version
        • Restart device
    • MClimate CO2 Display
      • 🥳Release notes
      • ⬆️MClimate CO2 Display Uplink decoder
      • 📖CO2 Display Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • CO2 measurement settings
        • Hiding data from the display
        • Child lock
        • PIR (Motion sensor)
        • Network-related settings & Others
        • Get Firmware & Hardware version
    • MClimate Wireless Thermostat
      • 🥳Release notes
      • ⬆️MClimate Wireless Thermostat Uplink decoder
      • ⬇️MClimate Wireless Thermostat Uplink encoder
      • 📖Wireless Thermostat Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • Target Temperature & Temperature range
        • Sensor mode & hiding data from the display
        • Heating status flag
        • Child lock
        • PIR (Motion sensor)
        • Get Firmware & Hardware version
        • Network-related settings & Others
    • MClimate HT Sensor LoRaWAN
      • 🥳Release notes
      • ⬆️HT Sensor Uplink Decoder
      • 📖HT Sensor LoRaWAN Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Temperature and humidity compensation
        • Keep-alive
        • Read device hardware and software version command explanation.
        • Network-related settings
        • Uplink types
        • Appendix (examples)
    • MClimate CO2 Sensor and Notifier LoRaWAN
      • 🥳Release notes
      • ⬆️CO2 Sensor Uplink Decoder
      • 📖CO2 Sensor LoRaWAN Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Keep-alive
        • Read device hardware and software version command explanation.
        • Network-related settings
        • Uplink types
        • CO2 boundary levels
        • CO2 auto-zero value
        • CO2 auto-zero period
        • CO2 Measurement period
        • Notifications configuration
    • MClimate Open/Close Sensor LoRaWAN
      • 🥳Release notes
      • ⬆️Open/Close Sensor uplink decoder
      • 📖Open/Close sensor LoRaWAN communication protocol
        • Commands cheat sheet
        • Keep-alive
        • Read device hardware and software version command explanation
        • Uplink types
        • Network-related settings
        • Event notification
        • Notification Blind Time
        • LED control command explanation
        • Restart device
    • MClimate Multipurpose Button LoRaWAN
      • 🥳Release notes
      • ⬆️Multipurpose Button Uplink decoder
      • 📖MClimate Button LoRaWAN Device communication protocol
        • Commands cheat sheet
        • Keep-alive
        • LEDs, button press types and behaviour
        • Read device hardware and software version command explanation
        • Network-related settings
        • Uplink types
        • Button press event counters
        • LED control command explanation
        • Restart device
    • MClimate T-Valve LoRaWAN
      • 🥳Release notes
      • ⬆️T-Valve Uplink Decoder
      • T-Valve LoRaWAN communication protocol
        • Commands cheat sheet
        • Uplink types
        • Keep-alive
        • Valve state control
        • Set LED behavior
        • Buzzer control
        • Emergency openings
        • Enable/disable manual valve open/close
        • Flood alarm time
        • Keep-alive period
        • Request Long data packet
        • Device allowed working voltage
        • Enable/Disable device flood sensor
        • Network related settings
        • Deactivate device (non-operational mode, save power)
    • MClimate Flood Sensor LoRaWAN
      • 🥳Release notes
      • ⬆️Flood Sensor Uplink Decoder
      • 📖Flood Sensor LoRaWAN communication protocol
        • Commands cheat sheet
        • Keep-alive
        • Flood event - Available configurations
        • Uplink types
        • Network-related settings
        • Read Firmware & Hardware version
        • Custom control of LED and Acoustic Buzzer
        • Read device parameters command
        • Restart device
    • MClimate AQI Sensor and Notifier LoRaWAN
      • 🥳Release notes
      • AQI Sensor Uplink Decoder
      • AQI Sensor Downlink encoder
      • AQI Sensor LoRaWAN Device communication protocol
        • Communication concepts
        • Commands cheat sheet
        • Keep-alive
        • Read device hardware and software version command explanation.
        • Network-related settings
        • Uplink types
        • Device buzzer control command
        • Device LED’s control
        • Appendix (examples)
  • Others
    • Application of MClimate Vicki to One-pipe steam heating systems
    • Battery Lifetime Estimation Methodology
    • Discover Smart Buildings solutions
    • How to solve Large space heating issues
    • Device Firmware upgrade via a Field Programming Kit (FPK)
      • Vicki Firmware Upgrade
  • Integrations
    • The Things Industries / TTN V3
    • ThingPark Enterprise
    • ThingPark Community
    • Tektelic
    • Helium
    • Chirpstack
    • Loriot
    • Kerlink
    • Melita
    • MachineQ
    • Orbiwise
    • Firefly
    • B-One
    • Milesight
    • Akenza
    • Element-IoT
    • Senet
    • Wattsense
    • RAK WisGateOS2
    • Netmore
Powered by GitBook
On this page
  • Decoder (JavaScript ES5):
  • DataCake Decoder

Was this helpful?

  1. Devices
  2. MClimate CO2 Display lite

MClimate CO2 Display lite Uplink decoder

Decoder (JavaScript ES5):

function decodeUplink(input) {
    try{
        var bytes = input.bytes;
        var data = {};
        const toBool = value => value == '1';
        const calculateTemperature = (rawData) => (rawData - 400) / 10;
        const calculateHumidity = (rawData) => (rawData * 100) / 256;
        
        function handleKeepalive(bytes, data) {
            // Temperature calculation from two bytes
            let temperatureRaw = (bytes[1] << 8) | bytes[2]; // Shift byte[1] left by 8 bits and OR with byte[2]
            data.sensorTemperature = Number(calculateTemperature(temperatureRaw).toFixed(2));
        
            // Humidity calculation
            data.relativeHumidity = Number(calculateHumidity(bytes[3]).toFixed(2));
        
            // Battery voltage calculation from two bytes
            let batteryVoltageRaw = (bytes[4] << 8) | bytes[5];
            data.batteryVoltage = Number((batteryVoltageRaw / 1000).toFixed(2));
        
            // CO2 calculation from bytes 6 and 7
            let co2Low = bytes[6]; // Lower byte of CO2
            let co2High = (bytes[7] & 0xF8) >> 3; // Mask the upper 5 bits and shift them right
            data.CO2 = (co2High << 8) | co2Low; // Shift co2High left by 8 bits and combine with co2Low
        
            // Power source status
            data.powerSourceStatus = bytes[7] & 0x07; // Extract the last 3 bits directly
        
            // Light intensity from two bytes
            let lightIntensityRaw = (bytes[8] << 8) | bytes[9];
            data.lux = lightIntensityRaw;
        
            return data;
        }
    
        function handleResponse(bytes, data){
        var commands = bytes.map(function(byte){
            return ("0" + byte.toString(16)).substr(-2); 
        });
        commands = commands.slice(0,-8);
        var command_len = 0;
    
        commands.map(function (command, i) {
            switch (command) {
                case '04':
                    {
                        command_len = 2;
                        var hardwareVersion = commands[i + 1];
                        var softwareVersion = commands[i + 2];
                        data.deviceVersions = { hardware: Number(hardwareVersion), software: Number(softwareVersion) };
                    }
                break;
                case '12':
                    {
                        command_len = 1;
                        data.keepAliveTime = parseInt(commands[i + 1], 16);
                    }
                break;
                case '14':
                    {
                        command_len = 1;
                        data.childLock = toBool(parseInt(commands[i + 1], 16)) ;
                    }
                break;
                case '19':
                    {
                        command_len = 1;
                        var commandResponse = parseInt(commands[i + 1], 16);
                        var periodInMinutes = commandResponse * 5 / 60;
                        data.joinRetryPeriod =  periodInMinutes;
                    }
                break;
                case '1b':
                    {
                        command_len = 1;
                        data.uplinkType = parseInt(commands[i + 1], 16) ;
                    }
                break;
                case '1f':
                    {
                        command_len = 4;
                        let good_medium = parseInt(`${commands[i + 1]}${commands[i + 2]}`, 16);
                        let medium_bad = parseInt(`${commands[i + 3]}${commands[i + 4]}`, 16);
                        
                        data.boundaryLevels = { good_medium: Number(good_medium), medium_bad: Number(medium_bad) } ;
                    }
                break;
                case '1d':
                    {
                        command_len = 2;
                        var deviceKeepAlive = 5;
                        var wdpC = commands[i + 1] == '00' ? false : commands[i + 1] * deviceKeepAlive + 7;
                        var wdpUc = commands[i + 2] == '00' ? false : parseInt(commands[i + 2], 16);
                        data.watchDogParams= { wdpC: wdpC, wdpUc: wdpUc } ;
                    }
                break;
                case '21':
                    {
                        command_len = 2;
                        data.autoZeroValue = parseInt(`${commands[i + 1]}${commands[i + 2]}`, 16);
                    }
                break;
                case '25':
                    {
                        command_len = 3;
                        let good_zone = parseInt(commands[i + 1], 16);
                        let medium_zone = parseInt(commands[i + 2], 16);
                        let bad_zone = parseInt(commands[i + 3], 16);
                        
                        data.measurementPeriod = { good_zone: Number(good_zone), medium_zone: Number(medium_zone), bad_zone: Number(bad_zone) } ;
                    }
                break;
                case '2b':
                    {
                        command_len = 1;
                        data.autoZeroPeriod = parseInt(commands[i + 1], 16);
                    }
                break;
                case '34':
                    {
                        command_len = 1;
                        data.displayRefreshPeriod = parseInt(commands[i + 1], 16) ;
                    }
                break;
                case '41':
                    {
                        command_len = 1;
                        data.currentTemperatureVisibility = parseInt(commands[i + 1], 16) ;
                    }
                break;
                case '43':
                    {
                        command_len = 1;
                        data.humidityVisibility = parseInt(commands[i + 1], 16) ;
                    }
                break;
                case '45':
                    {
                        command_len = 1;
                        data.lightIntensityVisibility = parseInt(commands[i + 1], 16) ;
                    }
                break;
                case '80':
                    {
                        command_len = 1;
                        data.measurementBlindTime = parseInt(commands[i + 1], 16) ;
                    }
                break;
                default:
                    break;
            }
            commands.splice(i,command_len);
        });
        return data;
        }
        if (bytes[0] == 1) {
            data = handleKeepalive(bytes, data);
        }else{
            data = handleResponse(bytes,data);
            bytes = bytes.slice(-10);
            data = handleKeepalive(bytes, data);
        }
        return {data: data};
    } catch (e) {
        console.log(e)
        throw new Error('Unhandled data');
    }
}

DataCake Decoder

function decodeUplink(input) {
    try{
        var bytes = input.bytes;
        var data = {};
        const toBool = value => value == '1';
        const calculateTemperature = (rawData) => (rawData - 400) / 10;
        const calculateHumidity = (rawData) => (rawData * 100) / 256;
        
        function handleKeepalive(bytes, data) {
            // Temperature calculation from two bytes
            let temperatureRaw = (bytes[1] << 8) | bytes[2]; // Shift byte[1] left by 8 bits and OR with byte[2]
            data.sensorTemperature = Number(calculateTemperature(temperatureRaw).toFixed(2));
        
            // Humidity calculation
            data.relativeHumidity = Number(calculateHumidity(bytes[3]).toFixed(2));
        
            // Battery voltage calculation from two bytes
            let batteryVoltageRaw = (bytes[4] << 8) | bytes[5];
            data.batteryVoltage = Number((batteryVoltageRaw / 1000).toFixed(2));
        
            // CO2 calculation from bytes 6 and 7
            let co2Low = bytes[6]; // Lower byte of CO2
            let co2High = (bytes[7] & 0xF8) >> 3; // Mask the upper 5 bits and shift them right
            data.CO2 = (co2High << 8) | co2Low; // Shift co2High left by 8 bits and combine with co2Low
        
            // Power source status
            data.powerSourceStatus = bytes[7] & 0x07; // Extract the last 3 bits directly
        
            // Light intensity from two bytes
            let lightIntensityRaw = (bytes[8] << 8) | bytes[9];
            data.lux = lightIntensityRaw;
        
            return data;
        }
    
        function handleResponse(bytes, data){
        var commands = bytes.map(function(byte){
            return ("0" + byte.toString(16)).substr(-2); 
        });
        commands = commands.slice(0,-8);
        var command_len = 0;
    
        commands.map(function (command, i) {
            switch (command) {
                case '04':
                    {
                        command_len = 2;
                        var hardwareVersion = commands[i + 1];
                        var softwareVersion = commands[i + 2];
                        data.deviceVersions = { hardware: Number(hardwareVersion), software: Number(softwareVersion) };
                    }
                break;
                case '12':
                    {
                        command_len = 1;
                        data.keepAliveTime = parseInt(commands[i + 1], 16);
                    }
                break;
                case '14':
                    {
                        command_len = 1;
                        data.childLock = toBool(parseInt(commands[i + 1], 16)) ;
                    }
                break;
                case '19':
                    {
                        command_len = 1;
                        var commandResponse = parseInt(commands[i + 1], 16);
                        var periodInMinutes = commandResponse * 5 / 60;
                        data.joinRetryPeriod =  periodInMinutes;
                    }
                break;
                case '1b':
                    {
                        command_len = 1;
                        data.uplinkType = parseInt(commands[i + 1], 16) ;
                    }
                break;
                case '1f':
                    {
                        command_len = 4;
                        let good_medium = parseInt(`${commands[i + 1]}${commands[i + 2]}`, 16);
                        let medium_bad = parseInt(`${commands[i + 3]}${commands[i + 4]}`, 16);
                        
                        data.boundaryLevels = { good_medium: Number(good_medium), medium_bad: Number(medium_bad) } ;
                    }
                break;
                case '1d':
                    {
                        command_len = 2;
                        var deviceKeepAlive = 5;
                        var wdpC = commands[i + 1] == '00' ? false : commands[i + 1] * deviceKeepAlive + 7;
                        var wdpUc = commands[i + 2] == '00' ? false : parseInt(commands[i + 2], 16);
                        data.watchDogParams= { wdpC: wdpC, wdpUc: wdpUc } ;
                    }
                break;
                case '21':
                    {
                        command_len = 2;
                        data.autoZeroValue = parseInt(`${commands[i + 1]}${commands[i + 2]}`, 16);
                    }
                break;
                case '25':
                    {
                        command_len = 3;
                        let good_zone = parseInt(commands[i + 1], 16);
                        let medium_zone = parseInt(commands[i + 2], 16);
                        let bad_zone = parseInt(commands[i + 3], 16);
                        
                        data.measurementPeriod = { good_zone: Number(good_zone), medium_zone: Number(medium_zone), bad_zone: Number(bad_zone) } ;
                    }
                break;
                case '2b':
                    {
                        command_len = 1;
                        data.autoZeroPeriod = parseInt(commands[i + 1], 16);
                    }
                break;
                case '34':
                    {
                        command_len = 1;
                        data.displayRefreshPeriod = parseInt(commands[i + 1], 16) ;
                    }
                break;
                case '41':
                    {
                        command_len = 1;
                        data.currentTemperatureVisibility = parseInt(commands[i + 1], 16) ;
                    }
                break;
                case '43':
                    {
                        command_len = 1;
                        data.humidityVisibility = parseInt(commands[i + 1], 16) ;
                    }
                break;
                case '45':
                    {
                        command_len = 1;
                        data.lightIntensityVisibility = parseInt(commands[i + 1], 16) ;
                    }
                break;
                case '80':
                    {
                        command_len = 1;
                        data.measurementBlindTime = parseInt(commands[i + 1], 16) ;
                    }
                break;
                default:
                    break;
            }
            commands.splice(i,command_len);
        });
        return data;
        }
        if (bytes[0] == 1) {
            data = handleKeepalive(bytes, data);
        }else{
            data = handleResponse(bytes,data);
            bytes = bytes.slice(-10);
            data = handleKeepalive(bytes, data);
        }
        return {data: data};
    } catch (e) {
        console.log(e)
        throw new Error('Unhandled data');
    }
}

function Decoder(payload, port) {
    var decoded = decodeUplink({ bytes: payload, fPort: port }).data;

    // Extract Gateway Information
    try {
        decoded.LORA_RSSI = (!!normalizedPayload.gateways && !!normalizedPayload.gateways[0] && normalizedPayload.gateways[0].rssi) || 0;
        decoded.LORA_SNR = (!!normalizedPayload.gateways && !!normalizedPayload.gateways[0] && normalizedPayload.gateways[0].snr) || 0;
        decoded.LORA_DATARATE = normalizedPayload.data_rate;
    } catch (e) {
        console.log(JSON.stringify(e));
    }

    // Array where we store the fields that are being sent to Datacake
    var datacakeFields = [];

    // Take each field from decoded and convert them to Datacake format
    for (var key in decoded) {
        if (decoded.hasOwnProperty(key)) {
            datacakeFields.push({ field: key.toUpperCase(), value: decoded[key] });
        }
    }

    // Forward data to Datacake
    return datacakeFields;
}
PreviousRelease notesNextCO2 Display lite Device communication protocol

Last updated 2 months ago

Was this helpful?

🆕
⬆️