⬆️MClimate CO2 + PIR lite Uplink decoder

Universal Decoder:

Supports: The Thinks Network, Milesight, DataCake, Chirpstack

// DataCake
function Decoder(bytes, port){
    var decoded = decodeUplink({ bytes: bytes, fPort: port }).data;
    return decoded;
}

// Milesight
function Decode(port, bytes){
    var decoded = decodeUplink({ bytes: bytes, fPort: port }).data;
    return decoded;
}

// The Things Industries / Main
function decodeUplink(input) {
    try {
        var bytes = input.bytes;
        var data = {};

        function handleKeepalive(bytes, data) {
            // Byte 1 bit 2: Occupied flag
            var occupiedValue = (bytes[1] & 0x04) >> 2;
            data.occupied = occupiedValue === 1;
            
            // Byte 1 (bits 1:0) and Byte 2: Internal temperature sensor data
            // Formula: t[°C] = (T[9:0] - 400) / 10
            // Extract bits 1:0 from byte 1 for the higher bits (bits 9:8)
            var tempHighBits = (bytes[1] & 0x03) << 8;
            // Use all bits from byte 2 for the lower bits (bits 7:0)
            var tempLowBits = bytes[2];
            // Combine to get the full 10-bit temperature value
            var tempValue = tempHighBits | tempLowBits;
            data.sensorTemperature = Number(((tempValue - 400) / 10).toFixed(2));
            
            // Byte 3: Relative Humidity data
            // Formula: RH[%] = (XX * 100) / 256
            data.relativeHumidity = Number(((bytes[3] * 100) / 256).toFixed(2));
            
            // Byte 4: Device battery voltage data
            // Battery voltage [mV] = ((XX * 2200) / 255) + 1600
            data.batteryVoltage = Number(((((bytes[4] * 2200) / 255) + 1600) / 1000).toFixed(2));
            
            // Bytes 5-6: CO2 value in ppm
            // Byte 5: CO2 value lower bits [7:0]
            // Byte 6 bits 7:3: CO2 value higher bits [12:8]
            var co2LowBits = bytes[5];
            var co2HighBits = ((bytes[6] & 0xF8) >> 3) << 8; // Mask upper 5 bits, shift right by 3 to get bits in position, then shift left by 8
            data.CO2 = co2HighBits | co2LowBits;

            // Byte 7: PIR trigger count
            data.pirTriggerCount = bytes[7];
            
            // For backward compatibility
            var pirValue = (bytes[1] & 0x04) >> 2;
            data.pirSensorStatus = pirValue === 1 ? "Motion detected" : "No motion detected";
            data.pirSensorValue = pirValue;
            
            return data;
        }

        function handleResponse(bytes, data){
            var commands = bytes.map(function(byte){
                return ("0" + byte.toString(16)).substr(-2); 
            });
            commands = commands.slice(0,-8); // Adjust based on CO2-PIR-Lite keepalive message length (8 bytes)
            var command_len = 0;
        
            commands.map(function (command, i) {
                switch (command) {
                    case '04':
                        {
                            command_len = 2;
                            var hardwareVersion = commands[i + 1];
                            var softwareVersion = commands[i + 2];
                            data.deviceVersions = { hardware: Number(hardwareVersion), software: Number(softwareVersion) };
                        }
                    break;
                    case '12':
                        {
                            command_len = 1;
                            data.keepAliveTime = parseInt(commands[i + 1], 16);
                        }
                    break;
                    case '19':
                        {
                            command_len = 1;
                            var commandResponse = parseInt(commands[i + 1], 16);
                            var periodInMinutes = commandResponse * 5 / 60;
                            data.joinRetryPeriod = periodInMinutes;
                        }
                    break;
                    case '1b':
                        {
                            command_len = 1;
                            data.uplinkType = parseInt(commands[i + 1], 16);
                        }
                    break;
                    case '1d':
                        {
                            command_len = 2;
                            var wdpC = commands[i + 1] == '00' ? false : parseInt(commands[i + 1], 16);
                            var wdpUc = commands[i + 2] == '00' ? false : parseInt(commands[i + 2], 16);
                            data.watchDogParams= { wdpC: wdpC, wdpUc: wdpUc } ;
                        }
                    break;
                    case '1f':
                        {
                            command_len = 4;
                            var good_medium = (parseInt(commands[i + 1], 16) << 8) | 
                            parseInt(commands[i + 2], 16);
                            var medium_bad = (parseInt(commands[i + 3], 16) << 8) | 
                            parseInt(commands[i + 4], 16);

                            data.boundaryLevels = { good_medium: Number(good_medium), medium_bad: Number(medium_bad) };
                        }
                        break;
                    case '21':
                        {
                            command_len = 2;
                            data.autoZeroValue = (parseInt(commands[i + 1], 16) << 8) | 
                            parseInt(commands[i + 2], 16);
                        }
                        break;
                    case '25':
                        {

                            command_len = 3;
                            var good_zone = parseInt(commands[i + 1], 16);
                            var medium_zone = parseInt(commands[i + 2], 16);
                            var bad_zone = parseInt(commands[i + 3], 16);

                            data.measurementPeriod = { good_zone: Number(good_zone), medium_zone: Number(medium_zone), bad_zone: Number(bad_zone) };
                        }
                        break;
                    case '2b':
                        {
                            command_len = 1;
                            data.autoZeroPeriod = parseInt(commands[i + 1], 16);
                        }
                        break;
                    case '2f':
                        {
                            command_len = 1;
                            data.uplinkSendingOnButtonPress = parseInt(commands[i + 1], 16) ;
                        }
                    break;
                    case '3d':
                        {
                            command_len = 1;
                            data.pirSensorStatus = parseInt(commands[i + 1], 16);
                        }
                        break;
                    case '3f':
                        {
                            command_len = 1;
                            data.pirSensorSensitivity = parseInt(commands[i + 1], 16);
                        }
                        break;
                    case '49':
                        {
                            command_len = 1;
                            data.pirMeasurementPeriod = parseInt(commands[i + 1], 16);
                        }
                        break;
                    case '4b':
                        {
                            command_len = 1;
                            data.pirCheckPeriod = parseInt(commands[i + 1], 16);
                        }
                        break;
                    case '37':
                        {
                            command_len = 1;
                            data.pirSensorState = parseInt(commands[i + 1], 16);
                        }
                        break;
                    case '39':
                        {
                            command_len = 2;
                            data.occupancyTimeout = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
                        }
                        break;
                    case '4d':
                        {
                            command_len = 1;
                            data.pirBlindPeriod = parseInt(commands[i + 1], 16);
                        }
                        break;
                    case 'a4': {
                        command_len = 1;
                        data.region = parseInt(commands[i + 1], 16);
                        break;
                    }
                    default:
                        break;
                }
                commands.splice(i,command_len);
            });
            return data;
        }

        // Route the message based on the command byte
        if (bytes[0] == 81) {
            // This is a keepalive message
            data = handleKeepalive(bytes, data);
        } else {
            // This is a response message
            data = handleResponse(bytes, data);
            // Handle the remaining keepalive data if present
            if (bytes.length >= 8) { // Check if there's enough bytes for a keepalive message (8 bytes for CO2-PIR-Lite)
                bytes = bytes.slice(-8); // Extract the last 8 bytes which contain keepalive data
                data = handleKeepalive(bytes, data);
            }
        }

        return { data: data };
    } catch (e) {
        // console.log(e);
        throw new Error('Unhandled data');
    }
}

Last updated

Was this helpful?