⬆️MClimate CO2 + PIR lite Uplink decoder
Universal Decoder:
Supports: The Thinks Network, Milesight, DataCake, Chirpstack
// DataCake
function Decoder(bytes, port){
var decoded = decodeUplink({ bytes: bytes, fPort: port }).data;
return decoded;
}
// Milesight
function Decode(port, bytes){
var decoded = decodeUplink({ bytes: bytes, fPort: port }).data;
return decoded;
}
// The Things Industries / Main
function decodeUplink(input) {
try {
var bytes = input.bytes;
var data = {};
function handleKeepalive(bytes, data) {
// Byte 1 bit 2: Occupied flag
var occupiedValue = (bytes[1] & 0x04) >> 2;
data.occupied = occupiedValue === 1;
// Byte 1 (bits 1:0) and Byte 2: Internal temperature sensor data
// Formula: t[°C] = (T[9:0] - 400) / 10
// Extract bits 1:0 from byte 1 for the higher bits (bits 9:8)
var tempHighBits = (bytes[1] & 0x03) << 8;
// Use all bits from byte 2 for the lower bits (bits 7:0)
var tempLowBits = bytes[2];
// Combine to get the full 10-bit temperature value
var tempValue = tempHighBits | tempLowBits;
data.sensorTemperature = Number(((tempValue - 400) / 10).toFixed(2));
// Byte 3: Relative Humidity data
// Formula: RH[%] = (XX * 100) / 256
data.relativeHumidity = Number(((bytes[3] * 100) / 256).toFixed(2));
// Byte 4: Device battery voltage data
// Battery voltage [mV] = ((XX * 2200) / 255) + 1600
data.batteryVoltage = Number(((((bytes[4] * 2200) / 255) + 1600) / 1000).toFixed(2));
// Bytes 5-6: CO2 value in ppm
// Byte 5: CO2 value lower bits [7:0]
// Byte 6 bits 7:3: CO2 value higher bits [12:8]
var co2LowBits = bytes[5];
var co2HighBits = ((bytes[6] & 0xF8) >> 3) << 8; // Mask upper 5 bits, shift right by 3 to get bits in position, then shift left by 8
data.CO2 = co2HighBits | co2LowBits;
// Byte 7: PIR trigger count
data.pirTriggerCount = bytes[7];
// For backward compatibility
var pirValue = (bytes[1] & 0x04) >> 2;
data.pirSensorStatus = pirValue === 1 ? "Motion detected" : "No motion detected";
data.pirSensorValue = pirValue;
return data;
}
function handleResponse(bytes, data){
var commands = bytes.map(function(byte){
return ("0" + byte.toString(16)).substr(-2);
});
commands = commands.slice(0,-8); // Adjust based on CO2-PIR-Lite keepalive message length (8 bytes)
var command_len = 0;
commands.map(function (command, i) {
switch (command) {
case '04':
{
command_len = 2;
var hardwareVersion = commands[i + 1];
var softwareVersion = commands[i + 2];
data.deviceVersions = { hardware: Number(hardwareVersion), software: Number(softwareVersion) };
}
break;
case '12':
{
command_len = 1;
data.keepAliveTime = parseInt(commands[i + 1], 16);
}
break;
case '19':
{
command_len = 1;
var commandResponse = parseInt(commands[i + 1], 16);
var periodInMinutes = commandResponse * 5 / 60;
data.joinRetryPeriod = periodInMinutes;
}
break;
case '1b':
{
command_len = 1;
data.uplinkType = parseInt(commands[i + 1], 16);
}
break;
case '1d':
{
command_len = 2;
var wdpC = commands[i + 1] == '00' ? false : parseInt(commands[i + 1], 16);
var wdpUc = commands[i + 2] == '00' ? false : parseInt(commands[i + 2], 16);
data.watchDogParams= { wdpC: wdpC, wdpUc: wdpUc } ;
}
break;
case '1f':
{
command_len = 4;
var good_medium = (parseInt(commands[i + 1], 16) << 8) |
parseInt(commands[i + 2], 16);
var medium_bad = (parseInt(commands[i + 3], 16) << 8) |
parseInt(commands[i + 4], 16);
data.boundaryLevels = { good_medium: Number(good_medium), medium_bad: Number(medium_bad) };
}
break;
case '21':
{
command_len = 2;
data.autoZeroValue = (parseInt(commands[i + 1], 16) << 8) |
parseInt(commands[i + 2], 16);
}
break;
case '25':
{
command_len = 3;
var good_zone = parseInt(commands[i + 1], 16);
var medium_zone = parseInt(commands[i + 2], 16);
var bad_zone = parseInt(commands[i + 3], 16);
data.measurementPeriod = { good_zone: Number(good_zone), medium_zone: Number(medium_zone), bad_zone: Number(bad_zone) };
}
break;
case '2b':
{
command_len = 1;
data.autoZeroPeriod = parseInt(commands[i + 1], 16);
}
break;
case '2f':
{
command_len = 1;
data.uplinkSendingOnButtonPress = parseInt(commands[i + 1], 16) ;
}
break;
case '3d':
{
command_len = 1;
data.pirSensorStatus = parseInt(commands[i + 1], 16);
}
break;
case '3f':
{
command_len = 1;
data.pirSensorSensitivity = parseInt(commands[i + 1], 16);
}
break;
case '49':
{
command_len = 1;
data.pirMeasurementPeriod = parseInt(commands[i + 1], 16);
}
break;
case '4b':
{
command_len = 1;
data.pirCheckPeriod = parseInt(commands[i + 1], 16);
}
break;
case '37':
{
command_len = 1;
data.pirSensorState = parseInt(commands[i + 1], 16);
}
break;
case '39':
{
command_len = 2;
data.occupancyTimeout = (parseInt(commands[i + 1], 16) << 8) | parseInt(commands[i + 2], 16);
}
break;
case '4d':
{
command_len = 1;
data.pirBlindPeriod = parseInt(commands[i + 1], 16);
}
break;
case 'a4': {
command_len = 1;
data.region = parseInt(commands[i + 1], 16);
break;
}
default:
break;
}
commands.splice(i,command_len);
});
return data;
}
// Route the message based on the command byte
if (bytes[0] == 81) {
// This is a keepalive message
data = handleKeepalive(bytes, data);
} else {
// This is a response message
data = handleResponse(bytes, data);
// Handle the remaining keepalive data if present
if (bytes.length >= 8) { // Check if there's enough bytes for a keepalive message (8 bytes for CO2-PIR-Lite)
bytes = bytes.slice(-8); // Extract the last 8 bytes which contain keepalive data
data = handleKeepalive(bytes, data);
}
}
return { data: data };
} catch (e) {
// console.log(e);
throw new Error('Unhandled data');
}
}Last updated
Was this helpful?